Si Detectors in Nuclear and High Energy Physics Experiments and BNL's Detector Development and Processing Capabilities ## Zheng Li Brookhaven National Laboratory ^{*}This research was supported by the U.S. Department of Energy: Contract No. DE-AC02-98CH10886 ### **OUTLINE** - Detector material and configurations - Various Si detectors - Existing technologies (good for sPHENIX, 5 years) - New technologies (good for ePHENIX, 10 years) - Detector processing facilities - National labs and universities - Commercial - BNL detector development and processing capabilities - Summary #### **Semiconductor Materials For Particle Detectors** | | Density (g/cm³) | Bandgap (eV) | Dielectric
constant | Displace-ment
threshold
energy (eV) | e-h
creation
energy
(eV) | μ _e
(cm/s/V) | μ _h
(cm/s/V) | # of e-h pairs/0.3% ${ m X_0}$ | |----------------|-------------------------------------|---|-----------------------------|---|-----------------------------------|---------------------------------|---------------------------------|--------------------------------| | Si | 2.3 | 1.12 | 11.9 | 13.5 | 3.6 | 1450
Good e
mobility | 450
Good h
mobility | 24k
Good signal | | C
(Diamond) | 3.5 | 5.5
Very low
leakage
current at RT | 5.7
Small
capacitance | 80
Much less
lattice damage | 13-17 | 1800
Good e
mobility | 1200
Very good
h mobility | 7.2k
Low signal | | SiC | 3.2 | 3.3 Low leakage current at RT | 9.7 | 30
Less lattice
damage | 9 | 400-900
Modest e
mobility | 20-50
Poor h
mobility | 13k | | Ge | 5.3
Hi Z, good for
hard X-ray | 0.66
Hi leakage
current at RT | 16
Large
capacitance | 15 | 3 | 3900
Very good e
mobility | 1900
Very good
h mobility | 16k | | CdTe | 5.9
Hi Z, good for
hard X-ray | 1.49 | 10 | 6.7 | 5 | 1050
Good e
mobility | 100
Poor h
mobility | 6.6k
Low signal | Why do we concentrate our efforts on Si detectors? Si is by far the most used material for particle detectors for its: - Abundance on earth - Mature and reproducible wafer manufacture - Natural oxide for passivation and masking - Mature processing technology (easy for segmentation, small segmentations and integration) - Radiation hardness - Used extensively and successfully in experiments - Choices: use something exist and working (less cost) or something new requires R&D #### **Semiconductor Detector Configuration (Conventional)** | | Spatial Sensitivity | Mostly Used
for | Rad-hardness | Processing | Readout | |--|--|---|--|---|---| | Pixel/Pad | 2D Pixel size(\sqrt{A}): 10 μm to mm's | HEP/NP | Good (small area –
small leakage
current) | Single-sided | Each pixel
(fast, 10's ns) | | Single-sided strip | 1D
Strip pitch:
10 µm to mm's | HE/NP | Modest | Single-sided | Each strip, e's or h's (fast, 10's ns) | | Double-sided strip | 2D
Strip pitch:
40 µm to mm's | HE/NP | Not good
(n-side not rad-
hard) | Double-sided | Each strip, e's and h's (fast, 10's ns) | | CCD
(Charge-coupled-device) | 2D
Pixel size(√A):
>10's μm | X-ray
and others
(LSST) | Not good
(very sensitive to
trapping) | Single-sided | Each column (slow, μs's) | | Drift (SDD) (Si drift detector) | 2D
Anode size
>10's μm | X-ray
and others
(STAR,
ALICE) | Not good
(very sensitive to
trapping, and to
doping change) | Double-sided | Each anode, e's (slow, μs's) | | AMPS (JFET) (Active matrix pixel sensor) DEPFET (PMOS) (Depleted P-channel FET) Fully depleted | 2D
Pixel size(√A):
~100's μm | X-ray
and others | Not good
(very sensitive to
trapping, and to
doping change) | Double-sided | Each column (slow, μs's-ms) | | MAPS (CMOS) (Monolithic active pixel sensor) | 2D
Pixel size(\sqrt{A}):
~10 μm | X-ray
and others
HEP/NP | Modest?
(very low resistivity
EPI Si) | EPI Si (20-50µm)
SOI (fully
depleted) | Each column (slow, µs's-ms) | (STAR) ### **Semiconductor Detector Configuration (new)** | | Spatial
Sensitivity | Mostly Used
for | Rad-hardness | Processing | Readout | |---|---|--------------------------|--------------|--|---| | 2D stripixel | 2D
Strip pitch:
10 μm to 100's
μm s | HE/NP
(PHENIX
VTX) | Modest | Single-sided | Each strip
(fast, 10's ns)
(charge sharing) | | 3D stripixel | 2D
Strip pitch:
10 μm to 100's
μm s
D | HE/NP | Good | 3D processing
Single-sided
or double-sided | Each strip, e's and h's (fast, <10 ns) | | 3D trench
(pixel, strip, and
stripixel), BNL, patent
pending | 2D
Strip pitch:
100's µm to
mm's | HE/NP
X-ray | Very good | 3D processing
Single-sided
or double-sided | Each pixel/strip,
e's and/or h's
(fast, <10 ns) | # Pixel detector and bump-bonding technology (Used extensively, CERN, RHIC, etc.) Pixellated semiconductor detector Bump-bonding (In) Readout chip One pixel element Solder bumps on a fluxless MCNC detector S. Cihangir, S. Kwan NIM A 476 (2002) 670–675 #### Si Drift Detector (SDD) (STAR, ALICE, X-ray, etc.) E. Gatti and P. Rehak, "Semiconductor Drift Chamber" – An application of a novel Charge Transport Scheme", Nucl. Instr. and Meth., A 255, pp. 608-614, 1984. X-ray Active Matrix Pixel Sensor (XAMPS, BNL) (LUSI in SLAC) # Monolithic Active Pixel Sensor (MAPS)-CMOS (STAR) APS Argonne Nat. Lab., December 8-9 2005 **Grzegorz DEPTUCH** #### CMOS IMAGE SENSORS IN HEP - MAPS >> Operation principle of photodiode MAPS #### Monolithic Active Pixel Sensors (MAPS) (INCIDENT/PHOTONS **PASSIVATION** OXIDE **NWELL** PWEL charge charge collected shared entirely between by one pixels neighbouring) hv pixels DEPLETION **EPI-LAYER** ZONE SUBSTRATE structure proposed for visible light allowing 100% detection efficiency (tracking!) #### operation: - ⇒ signal generated in epitaxial layer (low doping) Q≈80e⁻h⁺/μm ⇒~1000e⁻, - >> charge collection through thermal diffusion, - signal sensed as voltage drop on N-WELL anodes. - reflection bondaries at P-WELL and P-SUB. **ADVANTAGES:** BROOKHAVEN decoupled charge sensing and signal transfer (improved radiation tolerance, anders assess ste) amall nitch /hinh tracking presidies) law amount of material, last readout, moderate price, ooc, etc. #### MAPS-SOI (R&D) J. Marczewski et al., NIM A 549 (2005) 112-116 No charge sharing **ePHENIX** New 3D-Trench electrode configuration (Z. Li, 10/2009 BNL) or Independent Coaxial Detector Array (ICDA) - Mask set has been design and made - Processing of the first prototype batch p⁺ will start in 10/2010 at CNM - First prototype batch will be ready for testing in May 2011. BNL new 3D-Trench Electrode detector CT filed on 10/15/2010 $-\mathbf{V}$ CT/US2010/52887) #### 3D simulations of electric field #### **ePHENIX** Hexangular shape Full depletion voltage (150 μm electrode spacing): e spacing): 52 V, uniform 2000 #### Detector Processing Facilities -1 #### **University and National Labs** | | Main Detector
Technology | Main
Material | | Particle Physics related | |-----------------------------------|---|------------------|--------|---| | BNL
USA | Pixel, Strip/Stripixel SDD, AMPS 3D (Development, simulation, and design) | Si | 4", 6" | US ATLAS CERN RD39 CERN RD50 RHIC (X-ray det for photons) | | CNM
Spain | Pixel, Strip, 3D | Si | | ATLAS
CERN RD50 | | HIP
Finland | Pixel
Strip | Si | | CMS
CERN RD39
CERN RD50 | | LBL
USA | Fully-depleted CCD,
Strip | Si, Ge | | X-ray
Astrophysics | | MPI
Halbleiterlabor
Germany | Pixel, Strip, SDD
AMPS, DEPFET | Si | 4", 6" | X-ray
Astrophysics | #### Detector Processing Facilities -- 2 #### **Commercial** | | Main Detector
Technology | Main
Material | Wafer size | Particle
Physics related | |--------------------------------|---|------------------|------------|-------------------------------| | CiS-MSP
Germany | Pixel, Strip | Si | 4" | CERN RD50 | | FBK-IRST
(Trento)
Italy | Pixel, Strip, 3D | Si | 4", 6" | CERN RD50 | | Hamamatsu
Japan | Pixel, Strip,
Stripixel
(No double-
sided) | Si | 4", 6" | LHC/sLHC | | KETEK
Germany | SDD
AMPS | Si | 4", 6" | X-ray | | Micron
Semiconductors
UK | Pixel
Strip | Si | 4", 6" | CMS
CERN RD39
CERN RD50 | | SINTEF
Norway | Pixel, Strip, 3D | Si | 4", 6" | ATLAS | ## **BNL Si Detector R&D Program** - Scientific and engineering resources in the Instrumentation Div. - Silicon detector processing facility - Detector fabrication capability: - Process and device simulation - Detector and mask design - Processing steps (oxidation, photolithography, metallization) - Testing and characterization #### **Detector R&D** Silicon Drift Detectors Stripixels, strip, and pixel Radiation resistant Silicon XAMPS For NP,HEP, Photon science #### **Summary** - o Si detectors are still the detector of choice for NE, HEP, and photon sciences - Many detector configurations and technologies are readily available for application needs (sPHENIX) - o New 3D technology and detectors are now developed, and can be used for future applications (ePHENIX) - o BNL is at the forefront of the prototype and novel detector development and fabrications